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Abstract

Wepresent a newWhitney-like algorithm for finding a low-dimensional pseudo-

isometric embedding of a sampled Riemannian manifold. Tangent spaces on the

manifold are estimated from the data and then projected using a criterion that

ensures optimal smoothness of the inverse. This short projection is not isometric

but can bemade to be approximately isometric by determining an appropriate global

lengthening transformation in the embedded space. We illustrate the application

of this algorithm on numerically obtained solutions of the Kuramoto-Sivashinksy

partial differential equation.

1 Introduction

In the last few years there has been significant interest in finding low-dimensional

representations of data that lies on a manifold [2, 6, 9, 13, 15, 17]. Each of the methods

proposed above have certain advantages and disadvantages. One desirable feature for

an embedding algorithmwould be to have an isometric embedding of the data manifold.

None of the prior techniques explicitly attempts to numerically satisfy this optimization
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criterion for a general Riemannian manifold. Here we define such an optimization

criterion and propose an algorithm that provides a pseudo-isometric embedding of data

sampled from a Riemannian manifold.

The problem of finding low-dimensional embeddings of manifolds has a long his-

tory. The pursuit of solutions to this problem has led to some of the most beautiful and

surprising results in all of mathematics. In 1944Whitney proved that anm-dimensional
manifold has an embedding in R2m+1 [18]. The method of proof was by finding an

acceptable projection direction that reduces the dimension of the manifold embedding

by one. Whitney’s theorem provides a blueprint for a numerical smooth embedding

algorithm that was proposed in [2] to find low-dimensional representations of data on

manifolds. We will provide a simple modification to this technique that will make the

embedding closer to isometric.

2 Whitney’s and Nash’s Embedding Algorithms

By an embedding of an m-dimensional manifold U into Rn, n > m, we mean that
U ⊂ Rn locally looks like Rm at every point in U . From a practical viewpoint, we

would like the embedding dimension n to be as small as possible. This corresponds
to compressing the data that lie on U . In addition to compressing the data as much
as possible, we would also like to distort the intrinsic distances between points on U
as little as possible. If we retain all of the distances perfectly in our low-dimensional

embedding, then we have an isometric embedding.

If we don’t care about distorting our data manifold as we compress the ambient

embedding dimension, Whitney’s theorem gives us an upper bound on the maximum

possible embedding dimension [8].

Theorem 2.1 (Whitney’s Easy Embedding Theorem) LetU be a compact Hausdorff

Cr m-dimensional manifold, 2 ≤ r ≤ ∞. Then there is a Cr embedding of U inR2m+1.

The method of proof is to find a projection direction that does not lie parallel to any

vector in Σ̄, where

Σ .=
{

x− y

‖x− y‖2
: (x, y) ∈ U × U , x )= y

}
. (1)

The set Σ is all of the secant vectors for our manifold U , and Σ̄ contains, in addition,

all of the tangent vectors to U . In [2], it was shown that Whitney’s theorem gives

a reasonable algorithm for finding low-dimensional embeddings of data manifolds.

Further techniques for finding a ‘good’ projection direction were developed in [3].

Now, supposewe desire an isometric embedding, so our compressed data is ‘faithful’

to the original data. Here, we can use Nash’s C1 isometric embedding theorem [12].
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Theorem 2.2 (Nash’s C1 Isometric Embedding Theorem) Let U be a Riemannian

m-dimensional manifold. Then there is a C1 isometric embedding of U in R2m+1.

Notice that Nash’s theorem gives an upper bound on the embedding dimension that is

the same as that in Whitney’s theorem. One would correctly suspect that finding the

isometric embedding would be a more difficult task than just finding an embedding.

In fact, the method of proof in Nash’s theorem does not lend itself to numerical

implementation. There is a ‘spiraling’ procedure in Nash’s algorithm that requires

wrapping very high frequency, low amplitude helixes around an initial embedding. In

this way one can ‘stretch out’ a non-isometric embedding.

So, we know that it is fairly easy to find a low-dimensional embedding of a data

manifold. However, improving on this embedding may be a difficult proposition. One

idea would be to ‘stretch out’ the initial embedding provided by an application of

Whitney’s theorem. Of course we can’t do this using Nash’s method but, we can do a

simple stretching of the embedding. This is the main idea of our algorithm.

3 A Pseudo-Isometric Embedding Algorithm

Here we present a new method for finding the best projection direction to reduce the

embedding dimension by one. By ‘best direction’ we mean finding a direction p such
that the maximum of the inner products si · p is minimized for all si ∈ Σ, the set of
unit secants. (In practice we only have access to a subset of Σ because our manifold

is sampled.) Let S
.= [s1| · · · |sj ] be all of our available unit secant vectors. Then the

problem of finding the best projection direction is stated as finding

p∗ = min
‖p‖2=1

‖ST p‖∞. (2)

Now let qT = [pT ε]. Then (2) is equivalent to solving

minimize : ε

subject to :
[
ST − 1

]
q ≤ 0 (3)

pT p− 1 = 0.

If we relax the normalization condition on p, then our problem becomes

minimize : −pT p (4)

subject to : ST p ≤ 1.

After finding a solution p̂ to (4), we can let

p∗ =
p̂
‖p‖2

and (5)

ε∗ =
1

‖p‖2
, (6)
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which will be solutions to (3). A method for finding a global solution to (4) is presented

in [1]. A direct search method for solving (2) directly is given in [7].

Having found our best projection direction p∗, we can now reduce the embedding
dimension by one. The new embedding will generally be ‘short’, i.e., the metric at

each point will be smaller than the original metric. However, we can dilate the new

embedding space to try to make the new embedding as close to isometric as possible.

Now we need to find an optimal dilation. To do this we will pay close attention to how

the projected tangent planes are distorted. The way we measure the distance between

two points on an embedded manifold U is by taking infinitesimal steps. These steps

are taken in the tangent planes of the points on a manifold. During a compression of

the data, e.g., a Whitney projection, we can distort the tangent planes of our manifold.

This will in turn distort the distances measured on the manifold. The idea is to undo, as

much as is computationally possible, this tangent plane distortion which in turn makes

our compressed manifold as close to isometric as possible.

Let the (approximate) tangent vectors to our initial collection of data in the ambient

space E = [e(1), . . . , e(n)] be given by

T =
[
t(1)| · · · |t(n)

]
, (7)

where t(i) = [t(i)1 , . . . , t(i)m ]. The desired metric at each data point is g(i) = t(i)T t(i),
and the new tangent vectors are given by t̂(i) = (I − p∗p∗T )t(i). Then finding the
optimal dilation can be stated as the semidefinite program (SDP) [16]

min
M≥0

max
i,j,k

|g(i)
j,k − t̂(i)Tj Mt̂(i)k |, (8)

with j ≤ k = 1, . . . ,m. Letting T (i)
j,k = t̂(i)j t̂(i)Tk , (8) becomes

minimize : ι

subject to : M • T (i)
j,k − ι + z(i)

j,k = g(i)
j,k

−M • T (i)
j,k − ι + ζ(i)

j,k = −g(i)
j,k (9)

z(i)
j,k, ζ(i)

j,k, ι ≥ 0
M ≥ 0,

where • denotes the matrix inner product

A • B =
∑

r,c

ar,cbr,c. (10)

Here ι is an ‘isometric index’ and is positively correlated with the departure from
isometry, and satisfies 0 ≤ ι < 1. Hence, a lower value of ιmeans we have a closer-to-
isometric embedding. Solving (9) forM , we can dilate the reduced dimensional ‘short’

embedding Ê to find a pseudo-isometric embedding Ẽ by letting

Ẽ = M1/2Ê. (11)
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Note that Ẽ generally will not be a ‘short’ embedding. What we are doing in (11) is

stretching the ambient space in order to stretch out the tangent spaces of Ê. In this
way we are reducing the distortion of the tangent spaces introduced by the Whitney

projection algorithm in (2).

The SDP in (9) will typically be too large to practically solve. However, we can take

a sample of the data points and their corresponding tangent vectors and solve the reduced

problem. This ‘landmarks’ version seems reasonable given we only need a sufficiently

dense sampling of the tangent vectors to findM . Also, the process can be made ‘blind’

by choosing the smallest secants at each data point to be approximations to tangent

vectors. Alternately, we can use the SVD based method in [4, 5] to find orthonormal

bases for the tangent spaces, in which case g(i) = I in (9) since t(i)T t(i) = I . The
latter technique is the one used in this paper for the numerical experiments.

4 Consistency Test

When using the SVD procedure for finding the tangent space, we need to show that the

spans of the projection of the high-dimensional tangent spaces correspond to the spans

of the tangent spaces found from using the SVD procedure on the reduced dimensional

embedding. For the data point e(i) in the high-dimensional embedding, let N (i) be

the matrix of nearest neighbors used to find the tangent space. So e(i) is a column of

E, and N (i) consists of the columns of E that are closest to e(i). Then, following the

procedure in [4, 5], we center the matrix N (i) to find a new matrix D(i) given by

D(i) = N (i) − e(i)1T , (12)

where 1T = [1 · · · 1]. Let the SVD of D(i) be given by

D(i) =
[
U (i)

1 U (i)
2

] [
S(i)

1 0
0 S(i)

2

] [
V (i)T

1

V (i)T
2

]
. (13)

All of the significant singular values will be in S(i)
1 . If the manifold ism-dimensional,

then S(i)
1 will bem-by-m. S(i)

2 will contain only insignificant eigenvalues under some

‘noise’ level. These will generally be a few orders of magnitude less than the singular

values in S(i)
1 . Here we assume that the elements in N (i) are close enough to e(i) such

that the effects of the curvature of the manifold can be ignored. It follows then that the

columns of U (i)
1 give us an orthonormal basis for the tangent space of e(i).

Let P be the projection operator found from the Whitney algorithm. Then we need

to consider

PT D(i) = PT U (i)
1 S(i)

1 V (i)T
1 + PT U (i)

2 S(i)
2 V (i)T

2

= D̃(i)
1 + D̃(i)

2 . (14)
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Figure 1: The embedding of the circle in R2 of the α = 84 K-S data set.

1. 5 1 0. 5 0 0.5 1 1.5 10
5

0
5

102. 5

2

1. 5

1

0. 5

0

0.5

1

1.5

2

2.5

 

 

P seudoIsometric E mbedding
Whitney E mbedding

Figure 2: The embedding of the torus in R3 associated with α = 87.
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The span of the projected high-dimensional tangent space is given by the right

singular vectors of D̃(i)
1 . So generally the span of the tangent space calculated from

the reduced dimensional embedding will be perturbed from the span of the projected

high-dimensional tangent space [14]. The effects of perturbation will depend on how

much the spectrum of D̃(i)
1 is separated from the spectrum of D̃(i)

2 . As long as we do not

significantly collapse any tangent vector, this separation should be significant, and the

resulting perturbation minor. This should typically be the case. The reasoning is that

a significant collapse of a tangent vector would indicate a projection into a dimension

that is too small for an embedding of the manifold. However, it is possible that the

projection operator from the Whitney algorithm will significantly increase the local

curvature, resulting in a breakdown of the SVD procedure in the reduced dimensional

space. This can be mitigated by increasing the density of our sampling of the manifold.

In the continuum limit, the problem disappears.

5 Examples

Here we will examine the various algorithms on two data sets. These are taken from

the Kuramoto-Sivashinsky (K-S) equation

ut + 4uxxxx + α

(
uxx +

1
2
(ux)2

)
= 0, (15)

with α = 84 (a limit-cycle) and α = 87 (a torus). The data consists of numerical
solutions of the PDE generated by a Fourier-Galerkin method as described in [10, 11].

The simulations used here employed 10 complex Fourier modes and hence all of the

data is initially in the ambient space R20. The pseudo-isometric Whitney method was

run ‘blind’ using the SVD procedure in [4, 5] to find the tangent spaces. Thus, we are

trying to find an optimal dilation matrix M in (9) to make all of the projected tangent

spaces’ inner products as close to the identity matrix as possible.

For the α = 84 case, we have 54 samples from the limit cycle. The initial "good"
(but not isometric) projection was into R2 and this was improved by determining the

matrix M as defined in Equation (8). The actual embedding of this data is show in

Figure 1. Note, that, as expected, the embeddings are geometrically closed curves.

The errors associated with the metric for the Whitney and pseudo-isometric Whitney

algorithms are shown in Figure 3. The eigenvalues of M in this case were 1.0558
and 1.0163, and ι = 0.0246 in (9). For the α = 87 case, we have 951 samples from
the torus. The samples were on a one dimensional ‘thread’ that ‘looped’ around the

torus. Here the initial embedding was into R3. The resulting pseudo-isometric and

Whitney embeddings are shown in Figure 2. Although it is not easy to see, they each

have the appearance of a flattened torus. A summary of the errors in the metric for this

experiment are presented in Figure 4. The eigenvalues ofM in this case were 0.2585,
1.3268 and 6.8937, and ι = 0.9860 in (9).
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Figure 3: The lengths of the tangent vectors for embeddings in R2 of the α = 84 K-S
data set. The upper histogram is for the Whitney algorithm. The bottom histogram is

for the pseudo-isometric Whitney algorithm. We want the lengths to be as close to 1
as possible. Note that the pseudo-isometric Whitney algorithm embedding is no longer

short.
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Figure 4: The inner products of the tangent vectors for embeddings inR3 of the α = 87
K-S data set. The upper plots are for the Whitney algorithm. The bottom plots are for

the pseudo-isometric Whitney algorithm. From left to right are t(i)1 · t(i)1 , t
(i)
2 · t(i)2 , and

t(i)1 · t(i)2 . We want these to be as close to 1, 1 and 0 as possible, respectively.
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6 Discussion

We have introduced a new quadratic program to find the optimal projection direction

to be used in Whitney’s algorithm. Additionally, we have shown how to modify this

embedding to be closer to isometric via a semidefinite program. Both of these algorithms

provide reasonable embeddings of high-dimensional data. The main extension of the

pseudo-isometric Whitney algorithm would be to develop a ‘landmarks’ version in

order to increase the SDP’s performance.

One of the main advantages of these algorithms is the clear analytic limit. Indeed,

they are guaranteed to give embeddings into at most R2m+1 for any m-dimensional
manifold. The previous algorithms in [2, 6, 9, 13, 15, 17] lack this generality. Addi-

tionally, the lowest embedding dimension is easily recognized for a reasonably densely

sampled manifold since at least one of the secants available will be significantly col-

lapsed when we try to project into a dimension that is too low.

Other isometric embedding algorithms have been proposed. TheHessian Local Lin-

ear Embedding (HLLE) algorithm in [6] and the Isomap algorithm in [15] are restricted

to the cases where the entire manifold is isometric to a region ofRm. Theoretically, this

means that data that lies on a circle, a sphere or a torus, for example, cannot be isomet-

rically embedded by these algorithms. The Semi-Definite Embedding (SDE) algorithm

in [17] does not actually provide embeddings since it can change the topology of the

data. For example, it can untie knots. Also, the standard and pseudo-isometric Whitney

embedding algorithms give us a measure of the maximum departure from isometry: the

ε in (3) and the ι in (9).
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